Study Adda

Chapter wise solved paper

CAHPTER 8 ALGEBRA

•	Directions (Q)s. 1–18) : Ans	wer the auest	tions independent of each other.	
1.		$\frac{1}{x+5} + \sqrt{x} = 0,$			
		(b) 0		(d) None of these	(1994)
					(1))
2.	If $a + b + c =$	0, where $a \neq b =$	$\neq c$ c, then $\frac{a}{2a^2}$	$\frac{a^2}{a^2+bc} + \frac{b^2}{2b^2+ac} + \frac{c^2}{2c^2+ab}$ is equal to	
	(a) zero	(b) 1	(c) -1	(d) ate	(1994)
3 .	. ,	nic mean betw	. ,	itive numbers is to their geometric mea	n as 12 : 13;
		bers could be			
		(b) 1/12 : 1/1		(d) 2 : 3	(1994)
4.			2 = 0 is 4, v	while the equation $x^2 + px + q = 0$ has	equal roots,
	then the value			(1) 1/4	(1004)
5.	(a) 49/4	. ,	(c) 4	(a) 1/4 on is 8. What is the sum of the first 7	(1994)
υ.	arithmatic pro		tie progressio	in 19 0. What is the sum of the hist /	terms of the
	(a) 7		(c) 56	(d) Can't be determined	(1994)
6.	What is the v	alue of m whic	ch satisfies 3n	$n^2 - 21m + 30 < 10^{-1}$	
	(a) $m < 2$, or m	n > 5 (b) m	> 2 (c) 2	<mark>< m < 5 (d) m <</mark> 5	(1995)
7.	The value of	$(55)^3 + (45)^3$) ³		
1.	The value of	$\frac{(55)^3 + (45)^3}{(55)^2 - 55 \times 45 + 100}$	$-(45)^2$		
	(a) 100	(b) 105	(c) 125	(d) 75	(1995)
8.	$5^6 - 1$ is divisib	le by			
				(d) None of these	(1995)
9.				e oth <mark>er, then, the value of k is</mark>	(1005)
10	(a) 2		(c) -8		(1995)
U .				ly stamps of five rupees, two rupees and not have change, he gave me three mo	
				not have change, he gave me three mo	ic stamps of
			or stamps or e		
	one, what wa		_	each type that I had ordered initially was that 1 bought.	
	(a) 10	s the total nun (b) 9	n <mark>ber of stamp</mark> (c) 12	each type that I had ordered initially was os that 1 bought. (d) 8	as more than (1994)
11.	(a) 10 Given the qu	s the total num (b) 9 adratic equati	nber of stamp (c) 12 on x ² - (A - 3	each type that I had ordered initially was that 1 bought.	as more than (1994)
11.	(a) 10 Given the qu squares of the	s the total num (b) 9 adratic equati e roots be zero	nber of stamp (c) 12 on x ² - (A - 3	each type that I had ordered initially was os that 1 bought. (d) 8 B) x - (A - 2), for what value of A will th	as more than (1994) he sum of the
	(a) 10 Given the quisquares of the (a) -2	s the total num (b) 9 adratic equati e roots be zero (b) 3	nber of stamp (c) 12 on x² - (A - 3 (c) 6	each type that I had ordered initially was os that 1 bought. (d) 8 B) x - (A - 2), for what value of A will the (d) None of these	(1994) (1994) (1996)
	 (a) 10 Given the quisquares of the (a) -2 Which of the 	s the total num (b) 9 adratic equati e roots be zero (b) 3 following valu	nber of stamp (c) 12 on x ² - (A - 3 (c) 6 ces of x do not	each type that I had ordered initially was os that 1 bought. (d) 8 B) x - (A - 2), for what value of A will the (d) None of these t satisfy the inequality $(x^2-3x+2>0)$ at	(1994) (1994) (1996) all ?
12.	 (a) 10 Given the quisquares of the (a) -2 Which of the (a) 1≤ x ≤ 2 	s the total num (b) 9 adratic equati e roots be zero (b) 3 following valu (b) $-1 \ge x \ge -1$	nber of stamp (c) 12 on x^2 - (A - 3 (c) 6 cs of x do not -2 (c) 0	each type that I had ordered initially was by that 1 bought. (d) 8 b) x - (A - 2), for what value of A will the (d) None of these t satisfy the inequality $(x^2 - 3x + 2 > 0)$ at $\leq x \leq 2$ (d) $0 \geq x \geq -2$	(1994) (1994) (1996)
12.	(a) 10 Given the quisquares of the (a) -2 Which of the (a) $1 \le x \le 2$ $\log_2[\log_7(x^2 - x^2)]$	s the total num (b) 9 adratic equati e roots be zero (b) 3 following valu (b) $-1 \ge x \ge -1$ (x+37)]=1, the	nber of stamp (c) 12 on x^2 - (A - 3 (c) 6 (c) 6 (c) 6 (c) 0 (c) 0 (c) 0 (c) 0 (c) 0	each type that I had ordered initially was besthat 1 bought. (d) 8 B) x - (A - 2), for what value of A will the (d) None of these t satisfy the inequality $(x^2 - 3x + 2 > 0)$ at $\leq x \leq 2$ (d) $0 \geq x \geq -2$ be the value of x ?	(1994) (1994) (1996) all ? (1996)
12. 13.	(a) 10 Given the quisquares of the (a) -2 Which of the (a) $1 \le x \le 2$ $\log_2[\log_7(x^2 - (a) 3)]$	s the total num (b) 9 adratic equati e roots be zero (b) 3 following valu (b) $-1 \ge x \ge -1$ x+37)]=1, the (b) 5	nber of stamp (c) 12 on x^2 - (A - 3) (c) 6 es of x do not -2 (c) 0 en what could b (c) 4	each type that I had ordered initially was by that 1 bought. (d) 8 b) x - (A - 2), for what value of A will the (d) None of these t satisfy the inequality $(x^2 - 3x + 2 > 0)$ at $\leq x \leq 2$ (d) $0 \geq x \geq -2$ be the value of x ? (d) None of these	as more than (1994) all ? (1996) (1996) (1996)
12. 13.	(a) 10 Given the quisquares of the (a) -2 Which of the (a) $1 \le x \le 2$ $\log_2[\log_7(x^2 - (a) 3)]$	s the total num (b) 9 adratic equati e roots be zero (b) 3 following valu (b) $-1 \ge x \ge -1$ x+37)]=1, the (b) 5	nber of stamp (c) 12 on x^2 - (A - 3) (c) 6 es of x do not -2 (c) 0 en what could b (c) 4	each type that I had ordered initially was besthat 1 bought. (d) 8 B) x - (A - 2), for what value of A will the (d) None of these t satisfy the inequality $(x^2 - 3x + 2 > 0)$ at $\leq x \leq 2$ (d) $0 \geq x \geq -2$ be the value of x ?	as more than (1994) all ? (1996) (1996) (1996)
12. 13. 14.	(a) 10 Given the quisquares of the (a) -2 Which of the (a) $1 \le x \le 2$ $\log_2[\log_7(x^2 - (a) 3]$ P and Q are (b) $P + Q$? (a) 20	s the total num (b) 9 adratic equati e roots be zero (b) 3 following valu (b) $-1 \ge x \ge -1$ (x + 37)] = 1, the (b) 5 two integers so (b) 65	nber of stamp (c) 12 on x^2 - (A - 3 (c) 6 es of x do not -2 (c) 0 en what could b (c) 4 uch that (PQ) (c) 16	each type that I had ordered initially was best that 1 bought. (d) 8 3) x - (A - 2), for what value of A will the (d) None of these t satisfy the inequality $(x^2 - 3x + 2 > 0)$ at $\leq x \leq 2$ (d) $0 \geq x \geq -2$ be the value of x ? (d) None of these = 64. Which of the following cannot be (d) 35	as more than (1994) te sum of the (1996) all ? (1996) (1996) the value of (1997)
12. 13. 14.	(a) 10 Given the quisquares of the (a) -2 Which of the (a) $1 \le x \le 2$ $\log_2[\log_7(x^2 - (a) 3]$ P and Q are (b) $P + Q$? (a) 20	s the total num (b) 9 adratic equati e roots be zero (b) 3 following valu (b) $-1 \ge x \ge -1$ (x + 37)] = 1, the (b) 5 two integers so (b) 65	nber of stamp (c) 12 on x^2 - (A - 3 (c) 6 es of x do not -2 (c) 0 en what could b (c) 4 uch that (PQ) (c) 16	each type that I had ordered initially was besthat 1 bought. (d) 8 B) x - (A - 2), for what value of A will the (d) None of these t satisfy the inequality $(x^2 - 3x + 2 > 0)$ at $\leq x \leq 2$ (d) $0 \geq x \geq -2$ be the value of x ? (d) None of these = 64. Which of the following cannot be	as more than (1994) te sum of the (1996) all ? (1996) (1996) the value of (1997)
12. 13. 14.	(a) 10 Given the quisquares of the (a) -2 Which of the (a) $1 \le x \le 2$ $\log_2[\log_7(x^2 - (a) 3]$ P and Q are 1 P + Q ? (a) 20 If the roots,	s the total num (b) 9 adratic equati e roots be zero (b) 3 following valu (b) $-1 \ge x \ge -1$ (x + 37)] = 1, the (b) 5 two integers so (b) 65	nber of stamp (c) 12 on x^2 - (A - 3) (c) 6 es of x do not -2 (c) 0 en what could b (c) 4 uch that (PQ) (c) 16 the quadrati	each type that I had ordered initially was besthat 1 bought. (d) 8 B) x - (A - 2), for what value of A will the (d) None of these t satisfy the inequality $(x^2 - 3x + 2 > 0)$ at $\leq x \leq 2$ (d) $0 \geq x \geq -2$ be the value of x ? (d) None of these = 64. Which of the following cannot be (d) 35 ic equation $x^2 - 2x + c = 0$ also satisfy	as more than (1994) te sum of the (1996) all ? (1996) (1996) the value of (1997)

2

	(a) $c = -15$ (b) $x_1 = -5, x_2 = 3$ (c) $x_1 = 4 \cdot 5, x_2 = -2 \cdot 5$ (d) None of these	
16.	One year payment to the servant is Rs. 90 plus one turban. The servant leaves af and receives Rs. 65 and a turban. Then find the price of the turban	ter 9 months
17.	(a) Rs. 10 (b) Rs. 15 (c) Rs. $7 \cdot 5$ (d) Cannot be determined You can collect rubies and emeralds as many as you can. Each ruby is worth Rs.	(1998) 4 crores and
	each emerald is wroth of Rs. 5 crore. Each ruby weights 0.3 kg and each em 0.4 kg. Your bag can carry at the most 12 kg. What you should collect to get t	erald weighs
	wealth ?	ne maximum
	(a) 20 rubies and 15 emeralds(b) 40 rubies(c) 28 rubies and 9 emeralds(d) None of these	(1998)
18.	For the given pair (x, y) of positive integers, such that $4x-17y=1$ and $x \le 1,000$), how many
	integer values of y satisfy the given conditions	(1000)
•	(a) 55 (b) 56 (c) 57 (d) 58 Directions (Qs. 19–21) : Read the information given below and answer the	(1999)
	that/allows:	1
	These are m vessels with known volumes $V_1, V_2,, V_m$ arranged in ascending order of volumes	mes, where V_1
	is greater than 0.5 litre and V_m is less than 1 litre. Each of these is full of water. The water	is emptied into
	a minimum number of white empty vessels each having volume 1 litre. If the volumes	of the vessels
10	increases with the value of lower bound 10^{-1} .	
19.	What is the maximum possible value of m(a) 7(b) 6(c) 5(d) 8	(1999)
20 .	If m is maximum, then what is minimum number of white vessels required to emp	· · ·
01	(a) 7 (b) 6 (c) 5 (d) 8	(1999)
Z 1.	If m is maximum, then what is range of the volume remaining empty in the ver- maximum empty space	ssel with the
	(a) $0.45 - 0.55$ (b) $0.55 - 0.65$ (c) $0.1 - 0.75$ (d) $0.75 - 0.85$	(1999)
22.	Find the following sum	
	$\frac{1}{(2^{2}+1)+1} + \frac{1}{(4^{2}-1)} = \frac{1}{(6^{2}-1) + + \frac{1}{(20^{2}-1)}}$	
22	(a) $9/10$ (b) $10/11$ (c) $19/21$ (c) $10/21$ x > 2, y > -1 then which of the following holds good ?	(2000)
20.	(a) $xy > -2$ (b) $xy < -1$ (c) $x > -2/y$ (d) None of these	
24.	A, B and C are 3 cities that form a triangle and where every city is connected to	o every other
	one by at least one direct root. There are 33 routes direct and indirect from A to	
	are 23 direct routes from B to A. How many direct routes are there from A to C?	(2000)
25	(a) 15 (b) 10 (c) 20 (d) 25 If the equation $x^3 - ax^2 + bx - a = 0$ has three real roots then the following is true	(2000)
23.	(a) $a = 11$ (b) $a \neq 11$ (c) $b = 1$ (d) $b \neq 1$	(2000)
26 .	$ x^{2} + y^{2} = 0.1$ and $ x - y = 0.2$, then the value of $ x + y $ is	(
	(a) 0.6 (b) 0.2 (c) 0.36 (d) 0.4	(2000)
27 .	Let x, y and 2 be distinct integers, x and y are odd positive, and 2 is even and po one of the following statements cannot be true ?	sitive. Which
	(a) $(r-z)^2 y$ is even (b) $(x-z)y^2$ is odd (c) $(x-z)y$ is odd (d) $(x-y)^2 z$ is even	n (2001)
28 .	If $x > 5$ and $y < -1$, then which of the following statements is true ?	. ,
	(a) $(x+4y) > 1$ (b) $x > -4y$ (c) $-4x < 5y$ (d) None of these	(2001)

X asked for initial salary remained un	an initial sala of Rs. 200 wi altered till D	ry of Rs. 300 th a rise of R ecember 31,	a certain company at) with an annual incr (s. 15 every six month 1959. Salary is paid as salary during the po	rement of Rs. 30 is. Assume that d on the last da). Y asked for an the arrangements
(a) Rs. 93,300	(b) Rs. 93,20	00 (c) Rs. 93,1	00 (d) None of these		(2001)
			the conditions $2 < x < x < x < x < x < x < x < x < x < $	3 and $-8 < y < -$	-7. Which of the
	pression will h $(b) m^2$		(d) None of these		(2001)
			such that for an	v integer n < n	()
	-5 is positive				, the quantity
(a) 4	(b) 5		(d) None of these		(2001)
			are added, beginning		
number was added twice		ed twice. Th	e sum obtained was	1000. Which p	age number was
(a) 44	(b) 45	(c) 10	(d) 12		(2001)
	. ,		umbers such that abc	d = 1, what is the	e minimum value
of $(1+a)(1+b)$	(1+c)(1+d)?				
()	(b) 1				(2001)
			rd term onward <mark>s, eac</mark> h ence. If the difference		
	1		he tenth term of this		eventii allu sixtii
(a) 147	(b) 76		(d) Cannot be deterr		(2001)
35. Let <i>x</i> , <i>y</i> be	two positiv	e numbers	such that $x + y = 1$.	Then, the min	nimum value of
$\left(x+\frac{1}{x}\right)^2 + \left(y\right)^2$					
(a) 12		(c) 12.5			(2001)
36. Let b be a po (a) 15	(b) 20	and $a = b^2 - l$ (c) 24	b. If $b \le 4$ then $a^2 - 2a$ (c) None of these	<i>i</i> is divisible by	(2001)
	· ·		ve a quadratic equat	tion. Ujakar ma	
writing down	the consist t	erm. He end	ed up with the roots ((4, 3). Keshab m	ade a mistake in
			t Ih roots a5 (3, 2). W	hat will be the o	exact roots of the
(a) (6, 1)	lratic equation (b) (-3, -4		(d) (-4, -3)		(2001)
			nted as $X_a = (-1)^n X_n$	$-1.$ If $X_0 = x$ and	. ,
following is a		•	a () n	0	
_	-	(b) X_n is p	ositive if n is odd		
	tive if n is even	(d) None of			(2002)
		. ,	at, x + y + z = 5 an	d xy + yz + zx	. ,
	that x can ha				
(a) $\frac{5}{3}$	(b) $\sqrt{19}$	(c) $\frac{13}{-}$	(d) None of these		(2002)
5	· / · ·	3			
40. Let S denote		• •	2 1 4 3 4 -		
	the infinite su	2+5x+9x	$x^2 + 14x^3 + 20x^4 + \dots, \text{ wh}$	here $ x < 1$ and the second	he coefficient of

4

$$x^{n-1} = \frac{1}{2}n(n+3), (n=1,2,...) Then S equals$$
(a) $\frac{2-x}{(1-x)^3}$ (b) $\frac{2-x}{(1+x)^3}$ (c) $\frac{2+x}{(1-x)^3}$ (d) $\frac{2+x}{(1+x)^3}$ (2002)
41. If $x^2 + 5y^2 + z^2 = 2y(2x + z)$ then which of the following statements are necessarily true ?
A $x = 2y$ B $x = 2z$ C. $2x = z$
(a) ONly A (b) ONly B and C (c) ONly A and B (d) None of these (2002)
42. Annol was asked to calculate the arithmetic mean of ten positive integers each of which had two digits. By
mistake, he interchanged the two digits, say and b in one of these ten integers. As a result, his answer for
the arithmetic mean was 1.8 more than what it should have been. Then $b-a$ equals :
(a) 1 (b) 2 (c) 3 (d) None of these (2002)
43. A child was asked to add first few natural numbers (that is, $1+2+3+...$) so long his partience
permitted. As he stopped he gave the sum as 575. When the treacher declared the result
wrong the child discovered, he had missed one number in the sequence during addition. The
number he missed was
(a) loss than 10 (b) 10 (c) 15 (d) more than 15 (2002)
44. The number of real roots of the equation $\frac{4}{x^2} + \frac{B^2}{x-1} = 1$ where A and B are real numbers not
equal to zero simultaneously is
(a) None (b) 1 (c) 2 (d) 1 or 2 (2002)
45. If $pqr = 1$, the value of the expression $\frac{1}{1+p+q^2} + \frac{1}{1+q+r^2} + \frac{1}{1+r+p^{-1}}$ is equal to
 $x+2y-3z+p$
 $2x+6y-11z=q$
 $x-2y+7z=r$
(a) $2p-2q-r=0$ (b) $5p+2q+r=0$ (c) $5p+2q-r=0$ (d) $5p-2q+r=0$ (2003)
47. The sum of 3ⁿ and 15ⁿ elements of an arithmetic progression is equal to the sum of 6ⁿ, 11^m
and 13ⁿ elements of the progression. Then which element of the series should necessarily be
(a) 1 the (b) 9 h (c) 12 th (d) None of these (2003)
49. Let a, b, c, d be four integers such that $a+b+c+d=4m+1$ where m is a positive integer.
Given m, which one of the following is necessarily true?
(a) The minimum possible value of $a^2+b^2+c^2+d^2$ is $4m^2-2m+1$
(b) The minimum possible value of $a^2+b^2+c^2+d^2$ is $4m^2-2m+1$
(c) The maximum possible value

Study Adda

51. Let p and q be the roots of the quadratic equation $x^2 - (\alpha - 2)x - \alpha - 1 = 0$. What is the minimum possible
value of $p^2 + q^2$? (a) 0 (b) 3 (c) 4 (d) 5 (2003)
52. $\log_3 2$, $\log_3 (2^x - 5)$, $\log_3 (2^x - 7/2)$ are in arithmetic progression, then the value of x is equal to
 (a) 5 (b) 4 (c) 2 (d) 3 (2003) 53. There are 8436 steel balls, each with a radius of 1 centimetre, stacked in a pile, with 1 ball on top, 3 balls in the second layer, 6 in the third layer, 10 in the fourth, and so on. The number of horizontal layers in the pile is
(a) 34 (b) 38 (c) 36 (d) 32 (2003) 54. If the product of n positive real numbers is unity, then their sum is necessarily
(a) a mutliple of n (b) equal to $n + \frac{1}{n}$ (c) never less than n (d) a positive integer (2003)
55. Given that $-1 \le v \le 1, -2 \le u \le -0.5$ and $-2 \le z \le -0.5$ and $\omega = vz/u$, then which of the following is necessarily true? (a) $-0.5 \le \omega \le 2$ (b) $-4 \le \omega \le 4$ (c) $-4 \le \omega \le 2$ (d) $-2 \le \omega \le -0.5$ (2003)
56. If x, y, z are distinct positive real numbers then $\frac{x^2(y+z) + y^2(x+z) + z^2(x+y)}{xyz}$ would be
 (a) greater than 4 (b) greater than 5 (c) greater than 6 (d) None of these (2003) 57. In a certain examination paper, there are n questions. For j = 1, 2,, n, there are 2^{n-j} students who answered j or more questions wrongly. If the total number of wrong answers is
4095, then the value of n is (a) 12 (b) 11 (c) 10 (d) 9 (2003)
58. The infinite sum $1 + \frac{4}{7} + \frac{9}{7^2} + \frac{16}{7^3} + \frac{25}{7^4} + \dots$ equals
(a) $\frac{27}{14}$ (b) $\frac{21}{13}$ (c) $\frac{49}{27}$ (d) $\frac{256}{147}$ (2003)
59. The number of roots common between the two equations $x^3 + 3x^2 + 4x + 5 + 0$ and $x^3 + 2x^2 + 7x + 3 = 0$ is (a) 0 (b) 1 (c) 2 (d) 3 (2003) 60. A real number x satisfying $1 - \frac{1}{n} < x \le 3 + \frac{1}{n}$, for every positive integer n, is best described by
(a) $1 < x < 4$ (b) $1 < x \le 3$ (c) $0 < x \le 4$ (d) $1 \le x \le 3$
61. If x and y are integers then the equation $5x + 19y = 64$ has (a) no solution for x < 300 and y < 0 (b) no solution for x > 250 and y > -100
(c) a solution for $250 < x < 300$ (d) a solution for $-59 < y < -56$ (2003) 62. If both n and b belong to the set (1, 2, 3, 4), then the number of equations of the form
$ax^{2} + bx + 1 = 0$ having real roots is (a) 10 (b) 7 (c) 6 (d) 12 (2003)
63. What is the sum of 'n' terms in the series : $\log m + \log(m^2 / n) + \log(m^3 / n^2) + \log(m^4 / n^3) + \log m^2$
(a) $\log\left[\frac{n^{(n-1)}}{n^{(n+1)}}\right]^{n/2}$ (b) $\log\left[\frac{m^m}{n^n}\right]^{n/2}$ (c) $\log\left[\frac{m^{(1-n)}}{n^{(1-m)}}\right]^{n/2}$ (d) $\log\left[\frac{m^{(1+n)}}{n^{(n-1)}}\right]^{n/2}$ (2003)
64. If three positive real numbers x, y, z satisfy $y - x = z - y$ and $xyz = 4$, then what is the minimum possible value y?

6

		2 (1 10				
77.					Then the equation $x^n =$	256, has :
	(a) no solution(c) exactly two			exactly one solution of the exactly one solution of the exactly three distances of the exactly three distances of the exactly one solution of	stinct solutions for x	(2004)
78.					f the digits of n and S_n d	· · · ·
					nd 1000 for which $P_n + S$	
	(a) 81		(c) 18	(d) 9		(2005)
79.	• •				y the graph of $ x+y + $:	()
	(a) 8	(b) 12	(c) 16	(d) 20		(2005)
80.		y > 1, then th	e value of the		$\log_x\left(\frac{x}{y}\right) + \log_y\left(\frac{y}{x}\right)$ can ne	
	(a) 1	(b) −0·5	(c) 0	(d) 1	(y) (x)	(2005)
81.	A telecom se day. A male calls per day. day respectiv operator gets	rvice provide operator can The male an rely. In additi s Rs. 10 per ould the servi	r engages ma handle 40 c d the female on, a male c call she an ce provider o	ale and femal alls per day v operators ger operator gets swers. To m employ assum	e operators for answerin whereas a female operate a fixed wage of Rs. 250 Rs. 15 per call he answ inimize the total cost, ing he has to employ m	ng 1000 calls per or can handle 50 and Rs. 300 per yers and a female how many male
	(a) 15	(b) 14	(c) 12	(d) 10		(2005)
82 .		· · /			<mark>e sa</mark> me company. Each	· · ·
	secret not kn	own to others	6. They need	to exchange t	<mark>hese secrets over persor</mark>	-to-person phone
					secrets. None of the F	
				s French. Wh	<mark>at is the minimum num</mark> t	per of phone calls
	needed for th (a) 5	(b) 10		(d) 15		(2005)
83.	. ,	. ,	. ,		its three vertices at (41	· · · ·
					coordinates. The numb	
			Y		the points on the bound	
81	(a) 780	(b) 800	(c) 820	(d) 741	the reverse order to fo	(2005)
					sible by 7, then which o	
	necessarily tr					
	(a) 100 < <i>A</i> < 2	299 (b) 1	06 < <i>A</i> < 305	(c) 112 < A	1 < 311 (d) $118 < A < 3$	17 (2005)
85 .	If $a_1 = 1$ and $a_2 = 1$	$a_{n+1} - 3a_n + 24m$	for every po	sitive integer	n, then 0100 equals	
	(a) $3^{99} - 200$	(b) 3	$3^{99} + 200$	(c) $3^{100} - 2$	00 (d) $3^{100} + 200$	(2005)
86 .	What are the		nd y that sati	sfy both the e	quations ?	
	$2^{0.7x} \cdot 3^{-1.25y} = \frac{8}{2}$	$\frac{\sqrt{6}}{27}$				
	$4^{0.3x} \cdot 9^{0.2y} = 0.(3)$	81) ^{1/5}				
			, y = 6 (c)	x = 3, y = 5	(d) $x = 3, y = 4$	
	(e) $x = 5, y = 2$		(-)	,,, –		(2006)
87 .	• • •		f the equation	on $2x + y = 40$,	where both x and y are	positive integers
	and x≤y is					
	(a) 7	(b) 13	(c) 14	(d) 18	(e) 20	(2006)
8						

- 88. Consider the set S = {1,2,3,...,1000}. How many arithmetic progressions can be formed from the elements of S that start with 1 and end with 1000 and have at least 3 elements ?

 (a) 3
 (b) 4
 (c) 6
 (d) 7
 (e) 8
 (2006)
- 89. What values of x satisfy $x^{2/3} + x^{1/3} 2 \le 0$? (a) $-8 \le x \le 1$ (b) $-1 \le x \le 8$ (c) 1 < x < 8 (d) $1 \le x \le 8$ (e) $-8 \le x \le 8$ (2006)
- 90. If $\log_x x = (a \cdot \log_z y) = (b \cdot \log_x z) = ab$, then which of the following pairs of values for (a, b) is not possible ?

(a)
$$\left(-2,\frac{1}{2}\right)$$
 (b) (1,1) (c) $(0.4,2.5)$ (d) $\left(\pi - \frac{1}{\pi}\right)$ (e) $(2,2)$ (2006)

ANSWERS 1. B 2. Β 3. С 4. Α 5. С 6. С 7. Α 8. Β 9. D 10. Α 11. D 12. Α **13**. С 14. D 15. A **16**. Α 17. 22. Β **18**. **19**. С **20**. D **21**. С D **23**. D **24**. D Β С **25**. D **26**. D 27. Α **28**. D **29**. Α **30**. С **31**. D **32**. С **33**. С **34**. С **35**. С **36**. С **37**. A **38**. D **39**. **40**. Α С **43**. D **45**. С С **41**. **42**. В **44**. D **46**. **47**. С **48**. Α D **53**. С **54**. С 55. **49**. Β **50**. D **51**. **52**. D В **56**. С Α **58**. С **59.** A **60**. С **61**. С **62**. В **63**. **64**. Β **57**. D **65**. **66**. D 67. B **68**. D **69**. А **70**. В 71. С 72. Β D С Α **73**. С 74. С **75**. Α **76**. С 77. В **78**. Α **79**. **80**. С **83**. В **85**. С **86**. E 87. В 88. **81**. D **82**. Α **84**. D **89**. Α **90**. Ε

SOLUTIONS

- **1. (b)** $\log_7 \log_5(\sqrt{x} + 5 + \sqrt{x}) = 0$ $\log_5(\sqrt{x} + 5 + \sqrt{x}) = 7^0 = 1$ $\sqrt{x} + 5 + \sqrt{x} = 5^1 = 5 \Longrightarrow 2\sqrt{x} = 0$ $\therefore x = 0$
- 2. (b) Take any value of a, b, c such that a+b+c=0 and $a \neq b \neq c$ Say a=1, b=-1 and c=0Substituting these values in $a^{2} - + b^{2} + c^{2} - = 1 + \frac{1}{2} + 0 = 1$

$$\frac{1}{2a^2 + bc} + \frac{1}{2b^2 + ac} + \frac{1}{2c^2 + ab} = \frac{1}{2} + \frac{1}{2} + \frac{1}{2}$$

3. (c)
$$\frac{H.M.}{G.M.} = \frac{12}{13} \Rightarrow \frac{2ab}{(a+b)\sqrt{ab}} = \frac{12}{13}$$

or $\frac{2\sqrt{ab}}{a+b} = \frac{12}{13}$ or $\frac{a+b}{2\sqrt{ab}} = \frac{13}{12}$
By componedo and dividendo

 $\frac{a+b+2\sqrt{ab}}{a+b-2\sqrt{ab}} = \frac{13+12}{13-12} = \frac{25}{1}$ $\frac{(\sqrt{a}+\sqrt{b})^2}{(\sqrt{a}-\sqrt{b})^2} = \frac{25}{1}$ $\frac{\sqrt{a} + \sqrt{b}}{\sqrt{a} - \sqrt{b}} = \frac{5}{1}$ Again by compoenendo and dividendo $\frac{2\sqrt{a}}{2\sqrt{a}} = \frac{6}{4} \text{ or } \frac{a}{b} = \frac{9}{4} \text{ or } \frac{b}{a} = \frac{4}{9}$ (a) $x^2 + Px + 12 = 0$ 4. x = 4 will satisfy this equation $\therefore 16 + 4P + 12 = 0 \Longrightarrow P = -7$ Other eq. becomes $x^2 - 7x + q = 0$ Its roots are equal, so $b^2 = 4ac$ $\Rightarrow 49 = 4q$ or 49 = 4q(c) Fourth term $=8 \Rightarrow a + 3d = 8$ **5**. sum of seven terms $= s_7 = \frac{7}{2} [2a = (7-1)d] = \frac{7}{2} \times 2(a+3d) = 7 \times 8 = 56$ (c) $3m^2 - 21m + 30 < 0$ 6. or $m^2 - 7m + 10 < 0$ or $m^2 - 5m - 2m + 10 < 0$ or m(m-5) - 2(m-5) < 0or (m-2)(m-5) < 0**Case I** : m - 2 > 0 and m - 5 < 0 \Rightarrow m > 2 and m < 5 \Rightarrow 2 < m < 5 **Case II** : m-2 < 0 and $m-5 > 0 \Rightarrow m < 2$ and m > 5nothing common. Hence, 2 < m < 5(a) We know, $\frac{a^3 + b^3}{a^2 - ab + b^2} = a + b = 45 + 55 = 100$ 7. **(b)** $5^6 - 1 = (125)^2 - 1 = (125 - 1)(125 + 1) = 124 \times 126 = 15624$ 8. Which is divisible by 31. (d) $x^2 + kx - 8 = 0$ 9. Sum of roots $= a + b = -k = a + a^2$...(1) Product of roots $= ab = -8 = a^3 \implies a = -2$

- Using a = -2 in (1), -k = -2 + 4 = 2 or x = -2
- **10.** (a) The number of stamps that were initially bought were more than one of each type. Hence the total number of stamps

= 2 (5 rupee) + 2 (2 rupee) + 3 (1 rupee) + 3 (1 rupee) = 10 tickets

11. (d) Let the roots be m and n. The given quadratic equation can be written as $ax^2 + bx + c = 0$ where a = 1, b = -(A-3), c = -(A-7).

The sum of the roots is (m+n) = -(b/a) = A-3and the product of the roots is (nm)=(c/a)=-(A-7)the sum of the squares of the roots is $[(m+n)^{2}-2mn] = (A-3)^{2}-2(-)(A-7) = 0$ on solving, we get A = 5 or -1. None of these values are given in the options. **12.** (a) $x^2 - 3x + 2 > 0$ $\Rightarrow x^2 - 2x - x + 2 > 0 \Rightarrow x(x-2) - 1(x-2) > 0$ $\Rightarrow (x-2)(x-1) > 0$ This gives (x > 2) as one range and (x < 1) as the other. In between these two extremes, there is no value of x which satisfies the given inequality. **13.** (c) $\log_2[\log_2(x^2 - x + 37)] = 1$ use $\log_p x = y \Rightarrow p^y = x$ $\therefore 2 = \log_7(x^2 - x + 37)$ $\Rightarrow 49 = x^2 - x + 37 \Rightarrow x^2 - x - 12 = 0$ \Rightarrow (x-4)(x+3) = 0 \therefore x = 4**14.** (d) $PO = 64 = 1 \times 64 = 2 \times 32 = 4 \times 16 = 8 \times 8$ Corresponding values of P + Q are 65, 34, 20,16. Therefore, P + Q cannot be equal to 35. **15.** (a) $7x_2 - 4x_1 = 47$ $x_1 + x_2 = 2$ On solving, $11x_1 = 55$ $x_1 = 5$ and $x_2 = -3$: x = -15**16.** (a) Let turban be of cost Rs. x so, payment to the servant = 90 + x for 12 month for 9 month = $\frac{9}{12} \times (90 + x) = 65 + x \Longrightarrow x = Rs.10$ 17. (d) Basically, the question is of weights, so let us analyse them only 4 rubies weight as much as 3 emeralds. 4 rubies =16 crores 3 emeralds = 15 croresAll rubies, multiple of 4 allowed, is the best deal, so $\frac{12}{0.3} = 40$ rubies. **18.** (d) 4x - 17y = 1. And given that $1000 \ge x$ Hence we can say that $17y + 1 \le 4000$ i.e., $y \le 235$ Further also note that every 4th value of y e.g., 3, 7,11,..... will give an intger value of x. So number of values of y = 235/4 = 58.

19. (c) The lower bound is 05 and increases with 0.05. It forms an arithmetic progression, where 0.05 is the

common difference and 05 is the first term. The term is less than 1 and hence it is 0.95. To find the number of terms in the series use the formulae on nth term i.e; $T_n = a + (n-1)d$ where 'a' is the first term and 'd' is the common difference. Hence the value of n comes as 10. Maximum possible value of m is 10.

20. (d) The find the minimum number of white vessel required to empty the vessel for maximum possible value of m i.e., 10, we have to use the formulae of sum to n terms of this A.P. series. Sum to n terms is given by

$$S_n = \frac{n \times (First \, term + Last \, term)}{2}$$

where n is the number of terms in the series. For this series

$$S_n = \frac{10 \times (0 \cdot 5 + 0 \cdot 95)}{2} = 7 \cdot 25$$

Hence, minimum number of white vessels that is required is 8 as the capacity of white vessel is 1 litre.

21. (c) From the above solution we can see that the eighth vessel is empty by 0.75 litre and hence that is the upper limit for the range. Further for the lower limit, make all the vessels equally full, which makes them all 0.1 parts empty. So, the option that satisfies the above condition is (c).

22. (d) nth term
$$T_n = \frac{1}{(4n^2 - 1)} = \frac{1}{2} \left[\frac{(2n+1) - (2n-1)}{(2n+1)(2n-1)} \right]$$

$$= \frac{1}{2} \left[\frac{1}{(2n-1)} - \frac{1}{2n+1} \right]$$

$$S = \frac{1}{2} \left[\frac{1}{1} - \frac{1}{3} + \frac{1}{3} - \frac{1}{5} - \dots - \frac{1}{19} + \frac{1}{19} - \frac{1}{21} \right]$$

$$= \frac{1}{2} \left[1 - \frac{1}{21} \right] = \frac{10}{21}$$

- **23.** (d) By putting different value of x and y we see that none of these three hold good.
- **24.** (b) Let the number of direct routes from A to B be x, from A to C be z and that from C to B be y. Then the total number of routes from A to C are = xy + z = 33. Since the number of direct routes from A to B are 23, x = 23. Therefore 23y + z = 33. Then y must take value 1 and then z = 10, thus answer s = (b).

25. (d) Let
$$f(x) = x^3 - ax^3 - ax^2 + bx - a = 0$$

In the given equation, there are 3 sign changes, therefore there are at most 3 positive roots. If f(-x), there is no sign change. Thus there is no negative real root, i.e., if a, P and "y are the roots then they are all positive and we have $f(x) = (x - \alpha)(x - \beta)(x - \gamma) = 0$

$$x^{3}\overline{\alpha + \beta + \gamma}x^{2} + \overline{\alpha\beta + \beta\gamma + \gamma\alpha x} - \alpha\beta\gamma$$

$$\Rightarrow b = \alpha\beta + \beta\gamma + \gamma\alpha \Rightarrow a = \alpha + \beta + \gamma = \alpha\beta\gamma$$

$$\Rightarrow (\alpha + \beta + \gamma) / \alpha\beta\gamma = 1 \Rightarrow 1 / \alpha\beta + 1 / \alpha\gamma + 1 / \beta\gamma = 1$$

$$\Rightarrow \alpha\beta, \alpha\gamma, \beta\gamma > 1 \Rightarrow b > 3$$

Thus $b \neq 1$

26. (d) $x - y + 0 \cdot 2$ or $(x - y)^2 + 0 \cdot 04$.

Also $x^2 + y^2 = 0.1$ (since $x^2 + y^2 > 0$)

And solving this two we get 2xy = 0.6 from this we can find value of x + y which comes out to be + 0.4 or - 0.4 and solving this two we get |x| + |y| = 0.4.

27. (a) x, y, z > 0; x & y are odd, z is even.
Note : [odd - even is odd], [odd - odd is even]

[odd x odd is odd] since (x-2) is odd. \therefore $(x-z)^2$ is also odd and $(x-z)^2 y$ is odd. **28.** (d) $(x-z)^2 y$ cannot be even. x > 5 and $y < -1 \Longrightarrow 4y < -4$ (i) x > 5 and 4y < -4 so x + 4y < 1Let x > -4v be true $\Rightarrow 4v < -4$ or -4v > 4So, x > 4, which is not true as given x > 5. So, x > -4y is not necessarily true. (ii) $x > 5 \Rightarrow -4x < -20$ and 5y < -5It is not necessary that -4x < 5y as -4x can be greater than 5y, since 5y < -5. Hence none of the options is true. 29. (a) For total salary paid to X $= 12 \times (300 + 330 + 390 + 420 + 450 + 480 + 510 + 540 + 570)$ = $12 \times \frac{10}{2} [2 \times 300 + 9 \times 30]$ [:: sum of A.P.] $= 60 \times 870 = \text{Rs.} 52,200$ For total salary paid to Y $= 6 \times [200 + 215 + 230 + 245 + 260 \dots 20 \text{ terms}]$ $= 6 \times 10 \times [2 \times 200 + 19 \times 15]$ [sum of A.P.] $= 60 \times [400 + 285] = \text{Rs.} 41,000$ Total sum of both = Rs. 93,300**30.** (c) 2 < x < 3 and $-8 < y < -7, -32 < x^3y < -28$ While -80 < 5xy < -70Hence 5xy is the least because xy^2 is positive. **31.** (d) Let $y = n^3 - 7n^2 + 11n - 5$ At n = 1, y = 0 $\therefore (n-1)(n^2-6n+5) = (n-1)^2(n-5)$ Now, $(n-1)^2$ is always positive. Now, for n < 5, the expression gives a negative quantity. Therefore, the least value of n will be 6. Hence m = 6. **32.** (c) $\frac{x(x+1)}{2} = 1000 - y$ x = 44, y = 10**33.** (c) *abcd* = 1 minimum value of (1 + a) (1 + b) (1 + c) (1 + d) is $\Rightarrow 1 + a \ge 2\sqrt{a}$ [A.M. \ge G.M.] \therefore Min. value = $2\sqrt{a} \times 2\sqrt{b} \times 2\sqrt{c} \times 2\sqrt{d} = 16\sqrt{abcd} = 16$ **34.** (c) $x_{n+1} = x_n + x_{n-1}$ $x_8 = x_7 + x_6$ $x_7^2 - x_6^2 = 517$ Taking $x_7 = 29$ and $x_6 = 18$ we have $x_8 = 47$

 \therefore $x_9 = 47 + 29 = 76$ and $x_{10} = 76 + 47 = 123$. **35.** (c) $\therefore x + y = 1$ $\left(x+\frac{1}{x}\right)^{2}+\left(y+\frac{1}{y}\right)^{2}=x^{2}+y^{2}+\frac{1}{x^{2}}+\frac{1}{y^{2}}+4$ Min. value of $x^2 + y^2$ occur when x = y [:: x + y = 1] \therefore Put $x = y = \frac{1}{2}$ Min. value $=\left(\frac{5}{2}\right)^2 + \left(\frac{5}{2}\right)^2 = \frac{25}{2} = 12 \cdot 5$ **36.** (c) a = b(b-1) $a^{2}-2a = b^{2}[b^{2}+1-2a]-2b(b-1)$ or $a(a-2) = b(b-1)(b^2 - b - 2)$ $=b(b-1)(b^{2}-2b+b-2) = b(b-1)(b+1)(b-2)$ so this is divisible by 24 for $b \le 4$. **37.** (a) $(x^2 - 7x + 12) \Rightarrow$ wrong equation \Rightarrow Ujakar (sum of roots = 7, product of roots = 12) $x^2 - 5x + 6 \rightarrow$ wrong equation \Rightarrow Keshab (sum of roots = 5, product of roots = 6) Hence the correct equation is $x^2 - 7x + 6$ 6 and 1. **38.** (d) $X_n = (-1)^n X_{n-1}$ put $n = 1, X_1 = (-1)^1 x_0$ $X_1 = -x \quad (x_0 = x \text{ given})$ As x > 0 \therefore X_1 is – ve $X_2 = (-1)^2 X_1 = -x$, X_2 is-ve X_3 is+ ve $X_3 = (-1)^3 X_2 = x \Longrightarrow$ $X_4 = (-1)^4 X_3 = x \Longrightarrow X_4 \text{ is} + \text{ve}$ therefore none of these. **39.** (c) We know, $(x + y + z)^2 = x^2 + y^2 + z^2 + 2(xy + yz + zx)$ or $(5)^2 = x^2 + y^2 + z^2 + 2 \times 3$ For maximum value of x, y = z = 0but both cannot be zero at the same time as $xy + yz + zx \neq 0$ So $x^2 < 19$: x can be 13/3 as $x^2 = 169/9 = 18 \cdot 8$ **40.** (a) $\frac{2-x}{(1-x)^3} = (2-x)(1-x)^{-3}$ Using binomial here

$$= (2-x)(1+3x+6x^{2}+10x^{3}+...\frac{(r+1)(r+2)}{2}x^{2}+...$$
$$= 2+5x+9x^{2}+14x^{3}+...$$

this is same series as given

41. (c) $x^{2} + 5y^{2} + z^{2} = 2y(2x + z)$ Put x = 2y $4y^{2} + 5y^{2} + z^{2} = 2y(4y + z)$ or $9y^{2} + z^{2} = 8y^{2} + 2yz$...(1) this is not necessarily true put y = z in (1), we get $9z^{2} + z^{2} = 8z^{2} + 2z^{2}$ or $10z^{2} = 10z^{2}$ (1) is true for $y = z(x = 2y \& x = 2z \Longrightarrow y = z)$ therefore only A & B satisfy the given result. **42.** (b) Let $x_{1}, x_{2}, ..., x_{10}$ are +ve numbers Let digits of x_{10} are interchanged.

original $x_{10} = 10a + b$

after interchanging $x_{10} = 10b + a$

according to question,

$$\frac{x_1 + x_2 + \dots + x_9 + 10b + a}{10} = 1 \cdot 8 + \frac{x_1 + \dots + x_9 + 10a + b}{10}$$

$$\Rightarrow \frac{x_1 + x_2 + \dots + x_9 + 10b + a}{10} = \frac{x_1 + x_2 + \dots + x_9 + 10b + a}{10} = 1.8$$

$$\Rightarrow \frac{9b - 9a}{10} = 1.8 \text{ or } (b - a) = \frac{1.8 \times 10}{9} = 2$$

43. (d) Since the child missed the number so actual result would be more than 575 therefore we choose n such n(n+1)

$$\frac{(1+2)}{2} > 575$$

for this least value of n is 34 \therefore correct answer $=\frac{34(34+1)}{2}=595$ missing number =595-575=20 $A^2 B^2$

44. (a)
$$\frac{A}{x} + \frac{D}{x-x}$$

If only A = 0 there is only one root.

if only B = 0 there is only one root

if both A & B are not zero then there would be two roots (because quadratic equation forms) \therefore roots be 1 or 2

$$\frac{1}{1+p+q^{-1}} + \frac{1}{1+q+r^{-1}} + \frac{1}{1+r+p^{-1}}$$
$$= \frac{q}{q+pq+1} + \frac{r}{r+qr+1} + \frac{p}{p+pr+1}$$
$$= \frac{q}{q+\frac{1}{r}+1} + \frac{r}{r+\frac{1}{p}+1} + \frac{p}{p+pr+1}$$

$$= \frac{qr}{qr+1+r} + \frac{pr}{pr+1+p} + \frac{p}{p+pr+1}$$

$$= \frac{qr}{\frac{1}{p}+1+r} + \frac{pr}{pr+p+1} + \frac{p}{p+pr+1}$$

$$= \frac{pqr}{1+p+pr} + \frac{pr}{1+p+pr} + \frac{p}{1+p+pr}$$

$$= \frac{pqr}{1+p+pr} + \frac{pr}{1+p+pr} + \frac{p}{1+p+pr}$$

$$= \frac{pqr+pr+p}{1+p+pr} + \frac{1+p+pr}{1+p+pr} = 1 \quad (\because pqr = 1)$$

- **46.** (a) Working from the choices, 5p-2q-r= (5x+10y-15z)-(4x+12y-22z)-(x-2y+7z)=0For no other choices is the condition satisfied, hence (a).
- **47.** (c) $T_n = a + (n-1)d$. Hence we get 3rd + 5th term = (a+2d) + (a+4d) = 2a+6d. Similarly, 6,11 and 13^{th} terms = (a+5d) + (a+10d) + (a+12d) = 3a+27d. Now 2a+6d = 3a+27d, hence a+11d = 10. This means that the 12^{th} term is zero.
- **48.** (c) It is clear that the equation $2^x x 1 = 0$ is satisfied by x = 0 and 1 only. For x > 1, $f(x) = 2^x x 1$ starts increasing.
- **49.** (b) Minimum value of 4m + 1 is 4(1) + 1 = 5. Since a + b + c + d = 5We can have a = b = c = 1 and d = 2. Then $a^2 + b^2 + c^2 + d^2 = 1^2 + 1^2 + 1^2 + 2^2 = 7$
- **50.** (d) This represents an A.P. with first term as 1 and common difference as 1.

Sum of terms = $\frac{n(n+1)}{2}$ which must be close to 288.

By hit and trial, we get for n = 23, Sum $= \frac{23(24)}{2} = 276$.

The 24th alphabet is x, hence the 288th term is 'x',

51. (d) Sum of roots, $p+q = \alpha = -2$ Product of roots, $pq = -\alpha - 1$ Now $p^2 + q^2 = (p+q)^2 - 2pq = (\alpha - 2)^2 + 2(\alpha + 1)$

 $= \alpha^{2} + 4 - 4\alpha + 2\alpha + 2 = (\alpha + 1)^{2} + 5$

Hence the minimum value of this will be 5.

52. (d) In an AP, the three terms a, b, c are related as 2b + a + c

Hence, $2[\log_3(2^x - 5) = \lg o_3 2 + \log_3\left(2^x - \frac{7}{2}\right)]$

 $\log(2^x - 5)^2 = (2^{x+1} - 7)$

Substitute the choices, only x = 3 satisfies the conditions.

53. (c) The number of balls in each layer is 1, 3, 6, 10.. ...(each term is sum of natural numbers upto 1, 2, 3,, n digits).

$$\therefore \quad \sum \frac{n(n+1)}{2} = 8436 \Rightarrow \sum n^2 + \sum n = 8436 \times 2$$
$$\frac{n(n+1)(2n+1)}{6} + \frac{n(n+1)}{2} = 8436 \times 2$$

Solving, we get n = 36.

54. (c) The numbers must be reciprocals of each other.

Hence, $2 \times \frac{1}{2} = 1$ and $2 + \frac{1}{2} = 2\frac{1}{2} > 2$ Hence the sum is greater than the pro-

55. (b) Substitute the extreme values in the inequalities :

$$u = 1, u = -0.5, z = -2$$
. Then $\omega = \upsilon z / u = 4$. Only (b) option gives this.
Simply substitute x = 1, y = 2 and z = 3 in the expression to get the answer.

56. (a) There are 2^{n-j} students who answer wrongly. For

j = 1, 2, 3, ..., n, the number of students will be a GP with base 2. Hence $1 + 2 + 2^2 + ... + 2^{n-1} = 4095$.

Using the formula, we get $2^n = 4095 + 1 \Longrightarrow n = 12$

57. (c)
$$S_n = 1 + \frac{4}{7} + \frac{9}{7^2} + \frac{16}{7^3}$$
 ...(1)
 $\frac{1}{2}S_n = \frac{1}{7} + \frac{4}{7^2} + \frac{9}{7^3} + \frac{16}{7^4} + ...$...(2)
Subtracting (2) from (1),
 $S_n\left(\frac{6}{7}\right) = 1 + \frac{3}{7} + \frac{5}{7^2} + \frac{5}{7^3} + ...$ (3)
 $S_n\left(\frac{6}{7^2}\right) = \frac{1}{7} + \frac{3}{7^2} + \frac{5}{7^3} + ...$ (4)
Subtracting (4) from (3),
 $S_n\left(\frac{36}{49}\right) = 1 + \frac{2}{7} + \frac{2}{7^2} + ...$
This becomes a GP with first term = 1 and common ratio = 1/7
 $\Rightarrow S_n\left(\frac{36}{49}\right) = 1 + \frac{2}{7}\left(\frac{1}{1 - \frac{1}{7}}\right)$ or $S_n = \frac{49}{27}$

58. (a) Subtract the two equations

 $x^2 - 3x + 2 = 0$

(x-1)(x-2) = 0

the root 1 and 2 do not satisfy any of the original equation in case these was a common root, it will be the root of the subtracted equation. So no root.

59. (c) $0 < \frac{1}{n} \le 1$ For positive n

$$\Rightarrow 0 \le 1 - \frac{1}{n} < 1 \Rightarrow 3 < 3 + \frac{1}{2} \le 4$$

$$\Rightarrow 0 \le 1 - \frac{1}{n} < x \le 4 \Rightarrow 0 < x \le 4$$

60. (c)
$$5x + 19y = 64$$

We see that if y = 1, we get an integer solution for x = 9, now if y changes (increases or decreases) by 5, x will change (decrease or increase) by 19.

Looking at options, if x = 256 we get y = 64.

Using these values we see option 1, 2 and 4 are eliminated and also that these exists a solution for $250 < x \le 300$.

61. (b) $ax^2 + bx + 1 = 0$

for real roots $b^2 - 4ac \ge 0$ $b^2 - 4a \ge 0 \Longrightarrow b^2 \ge 4a$ $4a = \{4, 8, 12, 16\}$ $b^2 = \{1, 4, 9, 16\}$

for $b^2 = 4$, number of solution = 1 for $b^2 = 9$, number of solution = 2

for $b^2 = 16$, number of solution = 4 Total number of solution = 4 + 2 + 1 = 7

62. (d)
$$S = \log m + \log \frac{m^2}{n} + \log \frac{m^3}{n^2} + \dots n$$
 terms

$$= \log\left(m\frac{m^{2}}{n}\frac{m^{2}}{n^{2}}...\frac{m^{n}}{n^{n-1}}\right)$$
$$= \log\left(\frac{m\frac{n(n+1)}{2}}{n(n-1)}\right) = \log\left(\frac{m^{(n+1)}}{n^{(n-1)}}\right)^{n/2}$$

n

63. (b)
$$y = \frac{x+z}{2}$$
, $xyz = 4 \Rightarrow (x+z)xz = 8$
Let $x + z = a$
 $\Rightarrow az(a-z) = 8 \Rightarrow az^2 - a^2z + 8 = 0$
For z to be real, $b^2 - 4ac > 1$
 $\therefore a^4 - 32a > 0 \Rightarrow a^3 > 32$
 $y = \frac{x+z}{2} = \frac{(32)^{1/3}}{2} = 2^{2/3}$
64. (d) $x = \frac{n^2 + 2\sqrt{n}(n+4) + 16}{n+4\sqrt{n}+4}$
Let $\sqrt{n} = t$
 $\Rightarrow x = \frac{t^4 + 2t(t^2 + 4) + 16}{t^2 + 4t + 4} = \frac{(t+2)(t^3 + 8)}{(t+2)^2}$

$$\Rightarrow x = \frac{t^{2} + 4t + 4}{t^{2} + 4t + 4} = \frac{t^{2} + 4t + 4}{(t + 2)^{2}}$$
$$= \frac{t^{3} + 8}{t + 2} = t^{2} - 2t + 4$$

For t = 6 to $t = 6\sqrt{2}$ putting in above equation) $(40-12) < x < (72+4-12\sqrt{2})$ $\Rightarrow 28 < x < 76-12\sqrt{2}x$ or 28 < x < 60

65. (d) 13x+1 < 2z and $z+3=5y^2$ $\Rightarrow 13x+1 < 2(5y^2-3)$

 $\Rightarrow 13x + 7 < 10y^2 \Rightarrow 10y^2 > 13x + 7$

In the above equation, all the options (a), (b) and are possible.

- **66.** (b) $b \ge 1$ or $b \le -1x, x = -|a|b$ a - xb = a - (-|a|b)b $= a + |a|b^2 \ge 0$ since $b^2 \ge 1$
- 67. (d) Given a = 6b = 12c 2b = 9d = 12eSo $a = 1, 2, b = 2c, d = \frac{4}{2}c, c = \frac{c}{2}$

50,
$$a = 1$$
 $e, b = 2c, a = \frac{-1}{9}c, e = \frac{-1}{3}$

From the options only (d) option $\left|\frac{a}{6}, \frac{c}{d}\right|$ will have a fraction.

68. (d) Consider $T_1 = \{1, 2, 3, 4, 5\}$ This does not contain a multiple.

 $T_{2} = \{2, 3, 4, 5, 6\}$ $T_{3} = \{3, 4, 5, 6, 7\}$ $T_{4} = \{4, 5, 6, 7, 8\}$ $T_{5} = \{5, 6, 7, 8, 9\}$ $T_{6} = \{6, 7, 8, 9, 10\}$

All these do contain multiples of 6.

 T_7 once again does not contain a multiple of 6, Also, one part out of every 6 taken in a sequence will not

contain a multiple of 6. Therefore $\frac{96}{6} = 16$ sets will not contain multiples of 6.

69. (b)
$$\frac{1}{3}\log_3 M + 3\log_3 N = 1 + \log_{0.008} 5$$

$$\log_{e} M^{\frac{1}{3}} + \log_{3} N^{3} = 1 + \frac{\log_{e} 5}{\log_{e} 0.008}$$
$$\log_{e} (M.N^{9})^{1/3} = 1 + \frac{\log_{e} 5}{\log_{e} \cdot \frac{8}{1000}}$$
$$= 1 + \frac{\log_{e} 10 - \log_{e} 2}{\log_{e} 8 - \log_{e} 1000} = 1 + \frac{\log_{e} 10 - \log_{e} 2}{3\log_{e} 2 - 3\log_{e} 10}$$
$$= 1 + \frac{\log_{e} 10 - \log_{e} 2}{-3(\log_{e} 10 - \log_{e} 2)}$$

 $\log_3(MN^9)^{1/3} = 1 - \frac{1}{3} = \frac{2}{3}$ $(MN^9)^{\frac{1}{3}} = 1 - \frac{1}{3} = \frac{2}{3}$ $MN^{9} = 9$ $N^9 = \frac{9}{M}$ **70.** (c) If $x, y \in I$ 5x + 19y = 64For x = 256, we get that y = -64Then equation stands satisfied by y = -64 and x = 256. **71.** (b) $\log_{10} x - \log_{10} \sqrt{x} = 2 \log_x 10$ $\log_{10} x - \frac{1}{2} \log_{10} x = 2 \log_x 10$ $\frac{1}{2}\log_{10} x = 2.\log_{x} 10$ $\log_{10} xc = 4.\log_{10} 10$ $\log_{10} x = \log_{x} 10^{4}$ $\log_{10} x = \log_x 10000$ Now putting the value of x = 101 = 4 which is not possible. Putting the value of $x = \frac{1}{100}$ -2 = -2. Thus answer is (b). { x also satisfies the equation at x = 100 }. 72. (c) By the given condition in question Area and perimeter of $S_1 = a^2, 4a$ Area and perimeter of $S_2 = \frac{a^2}{2}, \frac{4a}{\sqrt{2}}$ Area and perimeter of $S_3 = \frac{a^2}{4}, \frac{4a}{(\sqrt{2})^2}$ Area and perimeter of $S_4 = \frac{a^2}{8}, \frac{4a}{(\sqrt{2})^3}$ Then, required ratio $=\frac{4a+\frac{4a}{\sqrt{2}}+\frac{4a}{(\sqrt{2})^2}+\frac{4a}{(\sqrt{2})^3}+\dots}{a^2+\frac{a^2}{2}+\frac{a^2}{4}+\frac{a^2}{8}+\dots}$

- **73.** (c) Given xy x y = 0Adding 1 to both sides of the equation, we get xy - x - y + 1 = +1y(x-1) - 1(x-1) = 1
 - (y-1)(x-1) = 1

As x and y are integers, x-1 and are y-1 integers.

Hence x-1 and y-1 must both be 1 or -1 to satisfy equation (A) i., e, x = 2, y = 2 or x = 0, y = 0Hence only two integers pairs satisfy the conditions x + y = xy

74. (a) $10^{10} = 100000000000$. If any one of the zeros is replaced by 1, the value of the result is between 10^{10} and 10^2 . There are 10 possible number since any of the 10 zeros can be replaced by $1 \cdot 2 \times 10^{10}$ (2 followed by 10 zeros) also lies between 10^{10} and 10^{11} . Moreover, the sum of digits of each of the 11 numbers is two. Hence *n* is 11.

75. (c) As
$$\frac{a}{b+c} = \frac{b}{c+a} = \frac{c}{a+b} = \frac{a+b+c}{b+c+c+a+a+b}$$

 $= \frac{a+b+c}{2(a+b+c)} = r = \frac{1}{2}$. (Assuming $a+b+c \neq 0$)
If $a+b+c=0$
 $\frac{a}{b+c}, \frac{a}{b+c} = \frac{a}{a+b+c-a}$ (by adding and subtracting a in the denominator)
 $= \frac{a}{0-a} = \frac{a}{-a} = r = -1$
 $\left(Similarly \frac{b}{c+a} = \frac{c}{a+b} = r = -1\right)$
Hence r can take only $\frac{1}{2}$ or -1 as values. Choice (c)
76. (b) $u = (\log_2 x)^2 - 6(\log_2 x) + 12$
let $\log_2 x = p$...(a)
21

 $\Rightarrow u = p^2 - 6p + 12$ $x^{u} = 256(=2^{8})$ Applying log to base 2 on both sides we get $= u \log_2 x = \log_2 2^8$...(b) Dividing (b) by (a) we get u = 8 / p $\Rightarrow 8/p = p^2 - 6p + 12 \Rightarrow 8 - p^3 - 6p^2 + 12p$ or $p^3 - 6p^2 + 12p - 8 = 0$ $(p-2)^3 = 0$ p = 2 $\log_2 x = 2 \Longrightarrow x = 2^2 = 4$ Thus we have exactly one solution. **77.** (d) 10 < n < 1000Let n is two digit number $n = 10a + b \Longrightarrow P_n = a$, $\mathcal{B}_n = a + b$ Then, a + ba + b = 10a + b $\Rightarrow ab = 9a \Rightarrow b = 9$ There are 9 such numbers 19, 29, 33,..., 99. Then let n is three digit number \Rightarrow $n = 100a + 10b + c \Rightarrow P_n = a \quad bS_n c = a + b + c$ *a* b + ac + b + c = 100a + 10b + c \Rightarrow $n = 100a + 10b + c \Rightarrow 100a + 10b + c$ $\Rightarrow abc = 99a + 9b$ $\Rightarrow bc = 99 + 9\frac{b}{c}$ But the maximum value for be = 81And RHS is more than 99, Hence, no such number is possible.

78. (c) Let $x \ge 0, y \ge 0$ and $x \ge y$

Then,
$$|x + y| + |x - y| = 4$$

 $y = 2$
 $y = x$
 $y = x$
 $x = 2$
 $x + y + x - y = 4 \implies x = 2$
and in case $x \ge 0, y \ge 0, x \le y$
 $x + y + y - x = 4 \implies y = 2$

Area in the first quadrant is 4. By symmetry, total area $4 \times 4 = 16$ unit.

79. (d)
$$P = \log_x \left(\frac{x}{y}\right) + \log_y \left(\frac{y}{x}\right)$$

 $= \log_x x - \log_x y - \log_y x$

$$= 2 - \log_x y - \log_x y - \log_y x$$

$$t = \log_x y$$

$$\Rightarrow P = 2 - \frac{1}{t} - t = -\left(\sqrt{t} + \frac{1}{\sqrt{t}}\right)^2$$

Which can never be 1.

80. (d) There are two equations to be formed

40m + 50f = 1000

 $250m + 300f + 40 \times 15m + 50 \times 10 \times f = A$

850m + 8000f = A

m and f are the number of males and females A is amount paid by the employer.

Then, the possible values of f = 8, 9, 10, 11, 12

If f=8, m=15

If f = 9,10,11, then m will not be an integer while f = 12, then m will be 10.

By putting f = 8 and m = 15, A = 18800. When f = 12 and m = 10, then A = 18100. Therefore, the number of males will be 10.

- **81.** (c) There have to be 2 calls from each person to the Englishman who knows French to get all the information. So, there should be 10 calls. But when the fifth guy call he would get all the information of the previous 4 guys along with Englishman's information. Hence, 1 call can be saved. So, the total number of calls = 9.
- **82.** (a) The equation forming from the data is x + y > 41. The values which will satisfy this equation are (1,39), (1, 38) ...(1,1),

So, the total number of cases are 39 + 38 + 37 + ... + 1 $= \frac{39 \times 40}{2} = 780$

83. (b) Let
$$A = 100x + 10y +$$

 $\Rightarrow B = 100z + 10y + x$

B - A = 99(z - x)

For B - A to be divided by 7, z - x has to be divisible by 7. Only possibility is z = 9, x = 2. \therefore Biggest number A can be 299.

∴ Option (b)

84. (c)
$$a_1 = 1, a_{n+1} - 3_{an} + 2 = 4n$$

 $a_{n+1} = 3a_n + 4n - 2$

when n = 2, then $a_2 = 3 + 4 - 2 = 5$

when n = 3, then $a_3 = 3 \times 5 + 4 \times 2 - 2 = 2$

So, it is satisfying $3^n 2 \times n$

Hence, a $a_{100} = 3^{100} - 2 \times 100$

85. (e) Given equations are

$$2^{0.7x} \times 3^{-1.25y} = \frac{8\sqrt{6}}{27}$$

and $4^{0.3x} \times 9^{0.2y} = 8 \times (81)^{1/5}$
From Eq. (ii),
 $4^{0.3x} \times 9^{0.2y} = 8 \times (81)^{1/5}$
 $\Rightarrow (2^2)^{0.3x} \times (3^2)^{0.2y} = 8 \times (81)^{1/5}$
 $\Rightarrow (2)^{0.6x} \times (3)^{0.4y} = (2)^3 \times (3)^{4/5}$
 $\Rightarrow 0.6x = 3 \Rightarrow x = 5$
and $0.4y = \frac{4}{3} \Rightarrow y = 2$

If we substitute the values of x and y in Eq. (i) these values satisfy the Eq. (i). So the answer x = 5, y = 2. Hence, the correct option is (e).

86. (b) The given equation is 2x + y = 40, where $x \le y$

$$\Rightarrow y = (40 - 2x)$$

The values of x and y that satisfy the equation are

x	1	2	3	4	 13
У	38	36	34	32	 14

Thus, there are 13 positive values of (x,y) which satisfy the equation such that $x \le y$.

- **87.** (d) Let number of terms in an arithmetic progression be n, then 1000 = 1 + (n-1)d
 - \Rightarrow $(n-1)d = 999 = 3^3 \times 37$

Possible values of (n-1) are 3, 37, 9, 111, 27, 333, 999.

0

Therefore, the number of possible values of n will also be 7, hence, 7 required progressions can be made.

88. (a)
$$x^{2/3} + x^{1/3} - 2 \le 0$$

 $\Rightarrow x^{2/3} + 2x^{1/3} - x^{1/3} - 2 \le 3$
 $\Rightarrow (x^{1/3} - 1)(x^{1/3} + 2) \le 0$
 $\Rightarrow -2 \le x^{1/3} \le 1$
 $\Rightarrow -8 \le x \le 1$

89. (e) Given that $\log_y x = a \log_z y = b \log_x z = ab$

$$\Rightarrow a = \frac{\log_y x}{\log_z y} \text{ and } b = \frac{\log_y x}{\log_x z}$$
$$\Rightarrow a \times b = \frac{\log_y x}{\log_z y} \times \left(\frac{\log_y x}{\log_x z}\right) = \frac{\left(\frac{\log_k z}{\log_k y}\right)}{\left(\frac{\log_k y}{\log_k z}\right)} \times \frac{\left(\frac{\log_k x}{\log_k y}\right)}{\left(\frac{\log_k z}{\log_k z}\right)}$$

$$= \left(\frac{\log_k x}{\log_x y}\right)^3 = (\log_y x)^3 = (ab)^3$$

Therefore, $ab - a^3b^3 = 0$ $\Rightarrow ab(1 - a^2b^2) = 0 \Rightarrow ab = \pm 1$

Only option (e) does not satisfy. Hence it is the required choice.

Study Adda