JSUNIL TUTORIAL PANJABI COLONY GALI ol

Use of Factor Theorem IX

Division Algorithm for Polynomials:

If a polynomial $f(x)$ is divided by a non-zero polynomial $g(x)$ then there exist unique polynomials q
(x) and $r(x)$ such that $f(x)=g(x) q(x)+r(x)$ where either $r(x)=0$ or deg $r(x)<\operatorname{deg} g(x)$. Here dividend $=f(x)$, divisor $=g(x)$, quotient $=q(x)$ and remainder $=r(x)$. Thus if $g(x)$ is a quadratic polynomial, then remainder $r(x)$ is of the form $a x+b$, where a, b may be zero. If divisor $g(x)$ is a linear polynomial then $r(x)$ is a constant polynomial, i.e., $r(x)=c$, where c may be zero.

1. A non-zero polynomial $g(x)$ is called a factor of any polynomial $f(x)$ iff there exists some polynomial $q(x)$ such that $f(x)=g(x) q(x)$, i.e. iff on dividing $f(x)$ by $g(x)$, the remainder is zero.
2. Remainder Theorem:

If a polynomial $f(x)$ is divided by ($x-a$), then remainder $=f(a)$.
If a polynomial $f(x)$ is divided by $(x+a)$, then remainder $=f(-a)$.
If a polynomial $f(x)$ is divided by $(a x+b)$, then remainder $=f(-b / a)$.
3. Factor Theorem:

If $f(x)$ is a polynomial and a is a real number, then $(x-a)$ is a factor of $f(x)$ iff $f(a)=0$.

Exercise

1. Divide $2 x^{3}-7 x^{2}+5 x+9$ by $2 x-3$ by long division method. Mention the dividend, divisor, quotient and remainder.
2. Using remainder theorem, find the remainder when $2 x^{3}-7 x^{2}+5 x+9$ is divided by $2 x-3$.
3. Find the remainder (without division) on dividing $f(x)$ by $x+3$, where
(i) $f(x)=2 x^{2}-7 x-1$
(ii) $f(x)=3 x^{3}-7 x^{2}+11 x+1$
4. Let $f(x)=2 x^{2}-7 x-1$. Find the remainder when $f(x)$ is divided by
(i) $x-3$
(ii) $2 x-3$
(iii) $x / 2-3$
(iv) $2(x-3)$
(v) $k(x-3), k \neq 0$
(vi) x
(vii) $4 x$
5. Let $f(x)=3 x^{3}-7 x^{2}+1$. Find the remainder when $f(x)$ is divided by
(i) $x+2$
(ii) $2 x+2$
(iii) $1(x+2) / 2$
(iv) $3(x+2)$
(v) $k(x+2), k \neq 0$
(vi) $x \quad$ (vii) $10 x$
6. Using remainder theorem, find the value of a if the division of $x^{3}+5 x^{2}-a x+6$ by $(x-1)$ leaves the remainder 2 a.
7. Show that $x-1$ is a factor of $2 x^{2}+x-3$. Hence factorise $2 x^{2}+x-3$ completely.
8. Show that $2 x+3$ is a factor of $6 x^{2}+5 x-6$. Hence find the other factor.
9. Show that $x+2$ is a factor of $f(x)=x^{3}+2 x^{2}-x-2$. Hence factorise $f(x)$ completely.
10. Show that $x-1$ is a factor of $x^{5}-1$ while $x^{5}+1$ is not divisible by $x-1$.
11. Find the constant k if $2 x-1$ is a factor of $f(x)=4 x^{2}+k x+1$. Using this value of k, factorise $f(x)$ completely.
12. The expression $2 x^{3}+a x^{2}+b x-2$ leaves remainders of 7 and 0 when divided by $2 x-3$ and $x+2$ respectively. Calculate the values of a and b. With these values of a and b, factorise the expression completely.
13. If $x+1$ and $x-1$ are factors of $f(x)=x^{3}+2 a x+b$, calculate the values of a and b. Using these values of a and b, factorise $f(x)$ completely.
14. If $x^{2}-1$ is a factor of $f(x)=x^{4}+a x+b$, calculate the values of a and b. Using these values of a and b, factorise $f(x)$.
15. Given that $x^{2}-x-2$ is a factor of $x^{3}+3 x^{2}+a x+b$, calculate the values of a and b and hence find the remaining factor.
16. The polynomial $x^{4}+b x^{3}+59 x^{2}+c x+60$ is exactly divisible by $x^{2}+4 x+3$. Find the values of b and c.

Answers

1. Dividend $=2 x^{3}-7 x^{2}+5 x+9$, divisor $=2 x-3$ quotient $=x^{2}-2 x-1 / 2$, remainder $=-21 / 2$
2. $-21 / 2$
3. (i) 38 (ii) -176
4. (i) -4
(ii) - 7 (iii) 29
(iv) -4
$\begin{array}{lll}\text { (v) }-4 & \text { (vi) }-1 \quad \text { (vii) }-1\end{array}$
5. (i) -51
(ii) $-9 \quad$ (iii) -51
(iv) -51
(v) $-51 \quad$ (vi) 1
(vii) 1
6. 4
7. $(x-1)(2 x+3)$
$8.3 x-2$
8. $(x-1)(x+1)(x+2)$
9. $k=-4 ;(2 x-1)^{2}$
10. $a=3, b=-3 ;(x+2)(2 x+1)(x-1)$
11. $a=-1 / 2, b=0, x(x-1)(x+1)$
12. $a=0, b=-1,(x-1)(x+1)\left(x^{2}+1\right)$
13. $a=-6, b=-8$, third factor is $x+4$
14. $b=13, c=107$
